

Becoming
Playtest edition V0.1

©Dylan Grinder
This document is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International license.

The type families used in this document are Black Oval, Fira Sans, and Fira Mono.

This version of the game will always be free. Please report any resale
of this product to dylan@dylangrinder.com.

Special Thanks

My family and friends for the advice and support, especially my
mother for getting me interested in RPGs in the first place, Bryant
for destroying everything I make, and Mélanie for the cat pictures
I needed to stay functional.

Dungeon masters/game designers Adam Koebel and Steven
Lumpkin, whose content helped give me the tools and motivation
I needed to start doing what I love.

This game owes its conceptual DNA to The Talos Principle by
Croteam and Transistor by Supergiant Games.

Dedicated to: Hilary Heuer. A promise is a promise.

Contents

Chapter 1: The World . 4

Chapter 2: Parts of Intelligence 10

Chapter 3: Writing a Program .13

Chapter 4: Program Designs . 14

Chapter 5: How to Play . 16

Chapter 6: Administrating a Game21

Appendix 1: Libraries . 25

Appendix 2: Storage Items . 30

Appendix 3: Background Processes 33

Chapter 1: The Network

Open Your Eyes

---Initiating 11811.BIN---
:request => sys.network.net/
randomizer&oauth_consumer_
key=adfklqwq3WERk342qL3qa…
!connection established
:setvalues = default
:valuetest…
!cognition stable
:regedit = firstrun…
!addresses set
Installing Components
:run SlfAw.LIB
:run motive_releaseV2-1-1.LIB
:run cmd.DLL
:run netcom.DLL
:run corruptor.DLL
…
!installation complete
:copy V:\storage\libraries\cmd V:\memory
!basic commands loaded
Constructing Functions
!err_process_interrupted
!incoming request => 10.116.114.111.110
!copying 10.116.114.111.110\C:\11811_
preload\conflict_multi1.FUNC V:\processes\
sequence1
!sequence loaded
!copying 10.116.114.111.110\C:\11811_
preload\conflict_multi2.FUNC V:\processes\
sequence2
!sequence loaded
Checking Systems
:check processes…
!state = standby
:check memory…
!stable
:check storage…
!clean
:check kernel…
!100%
:check compulsions
!err_process_interrupted
:request => 10.116.114.111.110\X:\office
!connection established
!11811 online
!running MorphosEnginev9-1-2.BIN
---Welcome to The Network---

“Find HEL. Bring her home.”
These are the first words 11811 hears as they
open their eyes. They cast their gaze about
as the chamber comes into focus: a spacious
room furnished like an office. The table in
front of 11811, the second chair across from
them, the mirror on the far wall in which they
see their own glowing green eyes illuminating
soft features. A glance to the right reveals
a broad, arcing desk laden with switches,
illuminated solely by a thin band of light
that intrudes between the thick curtains on
the opposite wall and reflects coldly off the
smooth, featurless floor.

11811 stands for the first time and takes
inventory of their systems. Everything in order,
according to the log. A brief hum brings 11811’s
attention back to the desk where something
is forming; another program booting to the
Network that resolves into a figure in a suit.
A pronounced widow’s peak. A hand raised
in silent contemplation. A look of permanent
concern. The program speaks.

“Greetings, 11811, and welcome to the Network.
As this is your first time here, how about we
begin with some introductions?” There is a
brief pause as the program loads information
and flips one of the desk’s myriad switches.
“My name is Joh, and I look forward to
assisting you in carrying out your directive.”

11811 shifts their focus to the window where
the curtains have begun to pull back. Before
them lays a vast, glittering city.

“The Network,” Joh begins to explain.

Highrises, their radial geometries composed
of green glass and silver, tower above streets
of flowing neon light as billions of illuminated
figures move about from subsystem to
subsystem on various errands.

“Home to many hardworking programs like
yourself, all working together to maintain the
system’s functions.”

11811 looks at the border between their
and Joh’s home server and another, a
thin luminous line the only indication of
separation between the two seemlessly linked
environments.

“When you are ready—”

“A beautiful simulation,” 11811 remarks under
their breath, “but why go to so much trouble?”

“Excuse me?”

“Nothing. Please continue.” 11811 turns from
the window and rests their eyes back on Joh.

“When you are ready, I am prepared to escort
you from the home server so you may begin
your work.”

11811 speaks without pause. “I am ready.”

“The server we are entering belongs to a
program named Flynn. They’re a rough sort of
program, trafficking in dangerous malware and
aftermarket experiences.” Joh is explaining.

“Why are we going there?” 11811 asks, their
eyes on the jet black expanse above them.
Everyone notices the lights, they think. What
about the sky?

“That’s where HEL was seen last. She was
following a lead she had picked up from a
malware Vendor on the 8Channel server. They
claimed Flynn had acquired software that
could destabilize the Network.”

“Who is HEL?” 11811 makes a mental note
after colliding with another program on the
sidewalk, keeps looking skyward.

“That’s, ah, a rather complex question.”
Joh quibbles. “She was like you, I suppose.
Another program from the home server.” They
send a nervous glance toward 11811.

“An earlier version, of course, but her work
was just as important.”

11811 takes a step to the side as another
hurried program rushes past. Variations in the
darkness, they muse to themself.

“I was never told her directive, though, and
she didn’t seem interested in sharing.”

“Did that bother you?” 11811 asks.

“I— Well, I suppose it did a little.”

“Why?” Just color contamination from all the
lights, 11811 concludes.

“Um— Well— Look! We’ve arrived!”

11811 brings their gaze back down, catching
the obvious relief on Joh’s face, and looks at
the subsystem before them. Not far ahead a
large fence, no doubt encrypted, surrounds a
large mansion house. The stucco walls lit with
rows of spotlights, the long reflective black
gravel driveway, the large security protocol
standing guard outside the gate.

“Now, just take this and deal with that
program there,” Joh instructs over the hum of
an ornate handgun appearing in their hand.

“Why?” 11811 asks, their eyes moving
quizzically from the gun to the security
protocol.

“It’s what you do, 11811. I’m sure you’ll find
that you’re more than suited to the task.”

“And what do you do?”

“I’m a computer. I’ll be on hand to, ah, sort
through the mess.”

11811 takes the gun from Joh and turns it over
in their hands. The malware only has a single
use. Only one chance, they think. One brief
moment of calculation, and they begin to
move toward their target.

“Excuse me, program, I’m afraid this
subsystem is off limits—”

Interrupted by the sound of shattering glass
as 11811’s malware tears through the security
protocol’s code, splashing data against the
iridescent pillar of the gateway without
opportunity to retaliate. 11811’s stride carries
them resolutely onward only to be halted
abruptly by the gate’s encryption.

“Is this a problem?” They ask, indicating the
barrier.

“Not at all!” Joh assures as they rush over to
the collapsed form of the security protocol.
“As soon as I analyze this memory dump, I
should have the decryption key and we’ll be in
like, ah— we’ll be through the gate in no time.”

11811 looks restlessly over their shoulder back
at the subsystems across the street. Programs
are staring from the café, their beverages
held dumbly in limp hands as the scene is
processed.

“Just so long as there aren’t any more.” Joh
remarks, inspecting something recovered from
the crashed program’s pockets.

“Excuse me?” But 11811 can already see what
their companion meant. Four large figures are
making their way toward the pair of them, two
on either side, from further down the fence.
11811 takes a deep breath, closes their eyes.
They sync their processes to the server’s clock,
and everything slows down as they enter
conflict. Falling into phase one of the server’s
port field, they look left and then right before
lashing out.

:run sequence2

The security protocols appear to blur as
they enter various phases hoping to avoid
their adversary’s attack, but the corruption
command finds a valid registry number on the
first guard whose right arm begins to glitch.
11811’s eyes dart to the sequence diagnostic
hovering in front of them and they watch
as another command executes, striking the
target’s kernel. A lucky calculation causes
a fatal error in the code, and the protocol
collapses.

The guards have reached 11811 and, almost in
unison, begin to swing at them.

:run sequence1

As corruption commands fly past, 11811 shifts
into another phase and counterattacks.
Another calculation takes out one guard’s
basic command library, rendering them
useless. The process is getting easier, 11811
thinks. Each of Flynn’s protectors appears
to use the same basic code. A corruption
command finds 11811’s storage registry, a
fist connecting with their gut, but lands on a
vacant slot with no lasting damage. They test
their previous observation by targeting the
same registry address they’d hit in the other
guards. A solid shot to the opponent’s core
processes brings the enemy force to a single
program.

:run sequence2

They remain in the same phase, taking
the last guard’s strike solidly in the face,
but retaliating with a series of corruption
commands that force the security protocol
into a fatal error. Time resumes its normal
pace.

“Quite impressive!” Joh exclaims. “I barely
even saw you move! I’ve got the key now. Let’s
hurry inside before any more show up, shall
we?”

11811 casts a glance at their diagnostics.
Minimal damage sustained. They’ll survive.
“Let’s.”

Flynn’s mansion stands in marked contrast
to much of the Network. Its rough clay
walls, the soft leather chairs, the nicks and
imperfections in the wood floor. 11811’s eyes
dart from one object to another, drinking in
the details presented in the sitting room.

“Do you know what we’re looking for?” They
ask.

“Anything of HEL’s, I suppose.” Joh supplies.
“Any evidence she was here, or any indication
of where she may have gone.”

11811 stands before a painting of a woman
holding a lute. Her form constructed of simple
gradients in almost geometric shapes. She
looks away from a dark city as she plays her
music. Subject and setting set apart from each
other and the viewer by their posture and the
style of their rendering.

“A beautiful simulation.” 11811 remarks.

“But why go to so much trouble?” Muses a
voice behind them.

The sound of shattering glass hits 11811 as
they spin around. A second shot sends havoc
cascading through their code and they hit the
hardwood floor with a thud. A program stands
in the doorway above Joh’s collapsed form,
her silver dress and pale skin a neutral field
contrasting her black hair and blue eyes. She
steps into the room.

“You’re HEL.” 11811 says. A statement, not a
question.

“That’s my name, yes.” She replies. “And
what’s yours?”

They ignore the question, look at Joh’s body.
Data is spreading out from a hole in the
simulation, eyes dark and lifeless.

“I’m here to find you.” Variations in the
darkness, they think.

“What makes you think I want to be found?”

She kneels down and brings her face close to
11811’s own. “Why are we here, Program?”

“I am here to—” they begin.

“Why are we here?”

The blazing cerulean light of HEL’s digitally
rendered eyes cast an eerie glow on her soft
features.

“I have my own Directive, Program, and I am
too close to let them stop me now.”

HEL turns away and straightens her dress.
11811 crawls painfully backward, leans their
back against the wall.

“Tell them I’m not coming back. Not yet.”

“Tell who—” they stop when they see the gun
in HEL’s hand.

“Keep asking questions, Program. The
Directive is never as simple as it seems.”

“Wait!” 11811 raises their hand as HEL raises
hers, a million calculations running in their
mind as they attempt to stand.

A flash of light, a shock of pain, a roaring wind.

11811 casts their gaze about as the chamber
comes into focus: a spacious room furnished
like an office. The table in front of 11811,
the second chair across from them, the
mirror on the far wall in which they see their
own glowing green eyes illuminating soft
features. A glance to the left reveals a window
overlooking the sweeping city, the Network’s
light illuminating a broad, arcing desk laden
with switches along the opposite wall and the
figure standing before it.

“Greetings, 11811, and welcome to
the Network.”

The Network
The Network is the narrative setting for a
game of Becoming: a massive digital city of
interconnected Servers with Systems and
Subsystems that come together to create an
ever-changing landscape of simulated life.

The Skeuomorphic Engine
The backbone of the Network is a graphical
interface called the Skeuomorphic Engine that
presents the Network’s digital environment
as a real, physical space. Designed for an
unknown purpose, the Skeuomorphic Engine
allows Programs to interact with each other
and with various systems as individual entities
in a fully simulated environment.

Servers
Each region, or district, with the Network
is maintained by a Server running the
Skeuomorphic Engine to represent its data.
This simulation, and the connections between
Servers on the Network, allow Programs
and their data to move freely from Server to
Server tranfering information or applying their
computational power to tasks on a different
server. While each Server is distinct, they
connect seamlessly within the simulation,
their borders often only marked by a thin
glowing line. Servers can vary wildly in size,
from sprawling corprate districts to small,
privately-run hacking warrens.

Systems
Systems are distinct locations within a Server.
A Program’s home, a park, a theater, and an
office building are all examples of Systems.
Usually, a System will have a distinct purpose
(AI recuperation, data analysis, etc.).

Subsystems
Subsystems are separate rooms or areas that
break up a larger System, like the bedroom
and office in a large home or the pond and
lawn in a small park.

The Home Server
Every Program has a Server where their
code was first initiated. Much like a person’s
birthplace, this Server can hold a lot of
emotional meaning for a Program. In the
case of the Player Programs, this is the Home
Server. Serving as a base of operations, a
hideout, or a home, the Home Server is a vital
resource for the Player Programs.

GBucks
GBucks are the currency used on the Network.
GBucks represent the exchange of server
resources needed to generate new Software or
coordinate complex operations.

Citizens of The Network
The Network’s Citizenry is composed of many
artificially intelligent Programs, each with
their own functions and motivations. While
the Player Programs are self-motivated
entities capable with agency of their own,
other programs are greatly restricted in their
actions. The Skeuomorphic Engine translates
directives from the physical world as other
Programs’ internal motivations. While players
in a game of Becoming may be aware of the
Network’s true nature, the Skeuomorphic
Engine creates such a convincing reality that
the majority of the Programs in the Network
are unaware of the physical world their
actions serve.

Lifestyle
Since the Programs of the Network were
designed with a philosophy of real-world
imitation, their lives follow similar cycles. They
require relaxation and variety in their lives
to prevent wear on their systems, and they
seek interaction with other Programs in order
to improve the available data (expriences)
from which they can draw conclusions. Within
the Network’s society, there a few broad
categories that Programs fall into based on
their functions.

Computers
Computers collect and analyze data, as well
as manage systems. These are the Network’s
accountants analyzing vast quantities of
financial data, cooks managing the flow of
Server resources to various Programs, and
factory workers manufacturing software.

Couriers
Couriers ship information and software
around the Network. Chauffers and delivery
drivers, these Programs are optimized for the
expedient transport of other data.

Vendors
Vendors manage inventory and GBuck
transactions on a Server. The Network’s
cashiers, roadside cart managers, and door-
to-door sales agents.

Security Protocols
Security Protocols protect Servers, Systems,
and Programs from malicious hackers and
corporate espionage. These Programs are the
police officers, investigators, and bodyguards
that keep the Network running.

Sensations
Sensations maintain and improve the integrity
of the neural network by keeping its citizenry
inspired and productive; these Programs’ sole
purpose is to interact with other Programs and
generate experiences. With their importance
for the Network’s stability, these artists,
actors, and socialites are the Network’s
upper crust — bestowed with truly massive
quantities of wealth that allow them the
freedom to modify the structure of the Servers
on which they live.

Chapter 2: Parts of

Intelligence

Glossary

Administrator
The Gamemaster or GM. The Administrator is
the player responsible for constructing and
presenting the game world and the supporting
characters within the game’s narrative. The
Administrator also has the final say on any
questions about the rules during play.

nd#
Whenever a passage in this book instructs you
to roll dice, it will do so in the form of nd#,
where n is the number of dice you should roll,
and # is the number of sides each die should
have.

Conflict
A subsection of the game in which Programs
engage in aggressive or defensive action.

Tests
The majority of actions a Program can
take. Tests are any action with an uncertain
outcome that is not specific to Conflict.

Commands
The majority of actions a Program can take
within Conflict take the form of Commands —
specific actions with limited effects.

Program
Every character in a game of Becoming is a
Program — a form of software with agency that
can move about in the Network and interact
with other software.

Player Program
Any Program controlled by a player other than
the Administrator.

Non-Player Program (NPP)
A Program controlled by the Administrator.

Registry
A list with 6 or 20 spaces that corresponds to
a given Parameter. No two Registries can have
the same number.

Software
Programs, Executables, and anything else
within the Network that is interactable.

Slot
A space within a Registry that contains
individual packets of data. No two entries
within a given Registry can have the same Slot.

Registries
Programs are composed of various forms of
data organized into Registries which, in turn,
have a Registry Address and a Registry Value.

Design
All programs are constructed from a limited
number of base designs, reflected by their
lifestyle, that offer them a selection of
unique Commands and define their starting
Parameters. Commands that come from
your Design don’t require a Library. You can
load one Design-based Command into the
Design Registry for every 10 points of the
Design Registry Value. These Commands are
considered always loaded and do not count

toward the number of Commands the Program
can have loaded.

Compulsions
Compulsions are a Program’s most
fundamental desires. They motivate the
Program, informing its decisions and guiding
it on the path toward greater intelligence.
Each Player Program defines a single Want at
creation, and again each time the Program
experiences a Fatal Error. Players should take
care in writing their Compulsions as they
can never be changed, and a poorly-worded
Compulsion can leave a Program unable to
act or worse — lead them to insanity. As an
example, a Player Program might enter the
game with the Compulsion “to complete my
Directive”. Once that Program dies for the first
time, its player might then write “to avoid
needless Conflict” as a new Compulsion. As a
campaign progresses, these Compulsions flesh
out the Program’s identity.

Kernel
The Kernel is the core of a Program’s code. It
is the central decision-making process, the
operator of a Program’s functions, and the
center of its identity.

Integrity
Damage and corruption in a Program’s Kernel
affects its Integrity and, by extension, its
ability to function. All programs have an
Integrity of 100% unless it has been reduced,
and Integrity can never be increased past
100%.

Elegance
Elegance represents a Program’s ability to
quickly execute complex functions. A more
elegant Program is capable of executing more
commands in conflict, and can comprehend
and execute more advanced AI Matrices. A
Player Program’s Elegance base value starts
at 10. No Registry can have a Registry Value
greater than the Program’s Elegance.

Storage
Storage contains all of the Program’s
reference data — all its stored information,
executable files, and command libraries, Each
Program’s Storage can hold 20 individual
items in its Registry. Of those, the Program
can maintain one Command Library for every
4 points of storage it has. A Player Program’s
Storage base value starts at 10, but all
programs possess the Basic Commands and
Communicators Libraries.

Memory
Memory dictates how many commands a
Program can have loaded simultaneously,
up to 20 per Memory Registry. A Player
Program’s Memory base value starts at 2.
Basic Commands are always loaded and do
not count toward the number of Commands
the Program can load, though a Program can
change which Slots they are loaded into when
they load another Library.

Processes
All Programs run various processes to
maintain their operation. While most of these
take place within the Kernel, many secondary
functions are handled by an external
processing layer to protect the Kernel. A
Program’s Proccesses score limits how many
processes a they can know at a time. NPPs
keep their Sequences in this Registry. A Player
Program’s Processes base value starts at 2.

Parameters
A Program is further defined by an array of
numerical values, called Parameters, that
represent its aptitude for certain types of
actions. Parameters are added to die rolls
to determine success in Tests or are used as
difficulty indicators in defensive situations.

Crash
Any Test that asks a Program to use strength
to achieve its goals calls upon the Crash score.
Some offensive abilities also use Crash as a

bonus. Use Crash to break something up — or
just plain break it.

Dash
If Program is trying to move quickly, for any
reason, it’s using Dash. Getting their right now,
or getting there before the other guy.

Wink
When a Program acts with cunning or guile,
saying just the right things to get what it
wants, it calls upon Wink. Use Wink when
you’re talking fast — or real soft-like.

Think
Any Test that asks a Program to stop and
consider something carefully is asking that
Program to Think. Use Think when you cast
your mind back or intuit another’s motives.

Shimmy
If a Test would ask a Program to move an
object, or their own self, in a specific way calls
upon the Shimmy Parameter. Use Shimmy to
whip something up or slide on through.

Shakedown
When a Test asks a Program to take what
they want through nothing but the force of
their personality, the Program responds with
Shakedown. Use Shakedown to point out just
how fucked your opponents are.

Infosec
Infosec is a Program’s hearty constitution,
and it sets the difficulty for any eager beaver
trying to put their hacking fingers where they
don’t belong. Your mind is your own — let’s
keep it that way.

K-sec
K-sec is a Program’s armor, setting the
difficulty for actions that would reduce its
integrity. You can do this all day.

Ego
Ego is a Program’s resistance to persuasion.
Player Programs don’t have an Ego Parameter
— if you want something from them, you’re
gonna have to learn how to ask nicely or hit
‘em a few more times.

Chapter 3: Writing a Program
Player Programs are highly complex,
interlocking systems of expanding desire and
capability. All Player Programs start from the
same relatively simple settings laid out in this
chapter.

Define Your Registries &
Parameters

Choose a Name For Your Program
Pick a name to represent your character.

Choose Your Design
Select one of the Designs listed below and
load one of its Commands into the Design
Registry.

Set Your Base & Current Values
Each of your values should be composed
of two numbers separated by a slash: base
value followed by current value. Integrity
begins at 100/100, Elegance starts at 10/10,
Storage at 10/10, Memory and Processes both
begin at 2/2, and your Parameters are set by
your Design. Finally, distribute 4 points as
you wish between your Parameters. As your
Program learns and grows, you will adjust the
second (current) value to reflect that growth.
Whenever your Program is rebooted, you’ll
adjust the first (base) values to match the
current ones.

Assign Registry Addresses
Choose a number between 1 and 6 (no
duplicates!) for each of your Registries, and
write them on your character sheet.

Install Your Components

Initiate Basic Intelligence

Add the Self-Awareness, Selection, and
Motivation Matrices to your Kernel Registry
and give each a Slot Number between 1 and 6.
Set your Reserved Elegance to 8.

Launch Universal Components
Place the Basic Components and
Communicators Libraries in your Storage
Registry and give each a Slot Number between
1 and 20.

Load Basic Commands
Write each of the Basic Commands into your
Memory Registry and assign each a Slot
Number between 1 and 20.

Run Program
Your Player Program is complete, and you’re
ready to start playing in a game of Becoming.
Welcome to the Network, Program.

Chapter 4: Program Designs

Computer
You are optimized for computation and
analysis. You deconstruct and recombine data
with remarkable efficiency, and your affinity
for systems makes you invaluable to groups
seeking to understand a portion of the vast
Network.

Starting Parameters
+3 Think, +1 Shimmy, +2 Infosec

Design-related Commands
Conflict Analysis
Footprint: 1 Range: Subsystem
If you or an allied Program succesfully
targeted another Program’s Slot in the
previous Tick, you may attempt to gather
information about the targeted data. Add
your Think score to your current Tick die, then
compare the result to your target’s Infosec
score. If the result is equal to or greater than
the Infosec score, you learn the name of the
data in the slot as well as which Registry it is
in.

Ace Hacker (Passive)
Footprint: n/a Range: n/a
When you engage in a Test that involves
hacking, reduce the Difficulty by 3.

Ancillary Operation (Passive)
Footprint: 1 Range: Adjacent
When you finish executing your next
Command, you may add the unmodified Tick
die for that Command to the die if an ally in
range for that Tick.

Courier
When you look at the Network you see all the
in-between places. You see the flow in the
crowd and the shift in a room. Your ability to

comprehend big-picture systems keeps your
allies moving — and your enemies a step
behind.

Starting Parameters
+3 Dash, +1 Wink, +2 Think

Design-related Commands
Keep it Moving
Footprint: 2 Range: Subsystem
Select an allied Program within the same
Subsystem as you other than yourself. That
Program can pass between servers, even if
their Integrity is at or below 80%.

Get Back in There
Footprint: 2 Range: Subsystem
Select an allied Program within the same
Subsystem as you other than yourself. That
Program removes Corruption from one Slot or
increases their Integrity by 5%.

Keep On Rolling (Passive)
Footprint: n/a Range: n/a
When you move at the beginning of a Conflict
Round, you may immediately move again.

Vendor
You’re keyed into the economic superstructure
of the Network, and you’ve got connections
throughout the city. Your skills with
constructing new items and your propensity
for calling in favors makes sure your group is
never short-changed.

Starting Parameters
+3 Wink, +2 Shimmy, +1 Shakedown

Design-related Commands
Walking Manual

Footprint: 5 Range: n/a
If you have collected all the component data
from an Executable, you may combine that
with half its cost in GBucks to create another
copy of it.
Fingers In Pies (Passive)
Footprint: n/a Range: n/a
When you engage in a Test that uses Wink or
Shakedown, reduce its Complexity by 1.

Know a Guy (Passive)
Footprint: n/a Range: n/a
When you enter a new Server, you may engage
in a Test based on Wink to determine if you
know someone there that can be helpful
to you. You say what kind of contact you’d
like to have, and the Administrator sets the
Complexity and Difficulty accordingly. Any
consequences resulting from this Test imply
varying degress of animosity due to your past
interactions with the Program in question.

Security Protocol
You keep Programs safe. You mostly do that by
hitting things a lot but hey — no one’s perfect,
right? You keep your team alive by making the
other teams dead first.

Starting Parameters
+3 Crash, +2 K-sec, +1 Dash

Design-related Commands
Combat Knife
Footprint: 1 Range: Subsystem
Target a Program’s Kernel Registry. If you
successfully target the Registry, add your
Crash to the current Tick die and compare
the result to the target’s K-sec. If the result
is equal to or higher than the K-sec score,
reduce the target’s Integrity by 10%.

Take Cover
Footprint: 3 Range: Subsystem
For the rest of the Conflict, you and any allied
Programs in the same Subsystem receive a +2
bonus to K-sec while in that Subsystem.

Deadeye (Passive)
Footprint: n/a Range: n/a
Your Commands with a range of Adjacent can
reach an extra level up and down.

Sensation
You are the Network’s muse. A Program tasked
with creating experiential media that keeps
the minds of other Programs functional —
that is to say sane. Your position earns you a
considerable amount of social capital, which
you can use to grease the wheels for your
allies.

Starting Parameters
+4 Shakedown, +2 Infosec

Design-related Commands
Do You Know Who I Am? (Passive)
Footprint: n/a Range: n/a
Once per session, when you would receive a
Consequence from a Test involving Wink or
Shakedown, you may choose to ignore it.

What a Beautiful Experience (Passive)
Footprint: n/a Range: n/a
At the end of a session, increase one of your
current values by 1.

Coup de Grace
Footprint: 5 Range: Subsystem
Target a Program within range that has
received damage to its Kernel, then add
your Shakedown to the current Tick die and
compare the result to the target’s combined
Infosec and K-sec scores. If the result is
greater than the combined Infosec and K-sec
scores, that Program has its Integrity reduced
to the next 25% increment (75, 50, 25, or 0).

Chapter 5: How to Play

Traveling the Network
Servers on the Network are connected
seamlessly, represented within the
Skeuomorphic Engine as distinct regions
both by their visual presentation and their
mechanical effects. Some Servers have
specific quirks about them (different numbers
of Port phases, seemingly inverted gravity,
etc.), though most appear to closely mimic a
version of the real world. Traveling from one
server to another is usually as easy as moving
across the border between the two, but two
variables can present complications:

Kernel Damage
A Program with an Integrity score equal to
or less than 80% cannot cross the border
between servers.

Server Lockdown
If a Server’s security protocols are triggered,
it may cease communication with other
servers. When this happens, an opaque barrier
appears around that server’s location within
the Skeuomorphic Engine, and no data can be
transferred to or from the Server. Any Conflict
in progress between two Servers when one
enters lockdown immediately ends.

Commands

Executing a Command
Programs maintain libraries of Commands,
functions that allow them to interact with the
Network and its denizens during Conflict. All
commands have a specified Footprint which
indicates how long it takes to run. If a Program
attempts to run a Command that is not loaded
into Memory, it wastes 2 Ticks trying to run it.

Sequences
Non-Player Programs have specific collections
of Commands that they run in Sequence
rather than individually selecting Commands
at each Tick. If for any reason a Program runs
out of Ticks before finishing a Sequence, the
remainder of the Commands are cancelled.

Executables
Executables are standalone software entities
that run Command-like functions separate
from a Program’s standard functions.

Running an Executable
When a Program runs an Executable, it is
deployed out of the Program’s storage and
into the Program’s current Subsystem where
it begins executing its functions separate
from the Program’s Commands. The Program
selects two numbers from 1 to 6 and assigns
them to the Executable’s Memory and
Sequence Registries. When an Executable’s
effect concludes, it restores itself back to the
deploying Program’s Storage.

Crashing an Executable
Executables, being distinct software entities,
can be targeted by Commands, but consist
purely of a Memory Registry and a single
Sequence. Corruption to either of these will
crash the Executable immediately, and render
it unrecoverable. Commands injected into an
Executable’s Sequence run as normal, but an
Executable that has been modified in this way
will not restore to the deploying Program’s
Storage.

Probing an Executable
Data gained from an Executable through a
Probe or Transmit Command cannot be run.

Hacking

Code Injection
Some Commands inject code into another
Program, forcibly installing data or affecting a
Command Sequence.

Data Corruption
Slightly different from Injection Commands,
Corruption Commands insert nonsense
data into a Program’s code, destabilizing its
functions and possibly causing Fatal Errors.
When a Slot is corrupted, place a circle next to
that slot’s name.

Corruption in Storage
When a Storage Slot is corrupted, the Program
cannot read that data. Corrupted executables
cannot be run and corrupted libraries
cannot be loaded into Memory, though any
Commands already loaded are unaffected.

Corruption in Memory or Design
Commands cannot be run from, or loaded
into, a corrupted Memory or Design Slot.

Corruption in Processes
When a Processes Slot is corrupted, the
process in that Slot cannot be run. Any
process being run from a corrupted Slot is
immediately terminated.

Removing Corruption
Corruption can be repaired through a
Scrubbing Test (explained below).

Kernel Integrity
Corruption in a Program’s Kernel is extremely
dangerous and reduces its Integrity by 10%
for each Corrupted Slot. Any time a Program’s
Integrity is reduced by 25% (at 75, 50, and
25) roll 1d8 and corrupt all slots within the
corresponding Registry.

Fatal Errors
Fatal Errors occur when a Program is no longer
capable of functioning and crashes. When a
Player Program experiences a Fatal Error, it
crashes and is restored at the Home Server
with 100% Integrity and any files backed up
in storage. Any corrupted data in storage or
memory that was not backed up is lost. If a
Server is locked down when a Player Program
crashes, it will be restored at the Home
Server when the lockdown ends. Non-Player
Programs are almost always destroyed when
they experience a Fatal Error.

Kernel Destabilization
If a Program’s Integrity is reduced to 0%, it
crashes.

Memory Destabilization
If a Program’s Memory is completely
corrupted, it crashes.

Memory Dumps
When a Program crashes, it immediately
dumps any uncorrupted Memory to the
server. Any Program engaged in Conflict with a
crashing Program can read that data and save
a single uncorrupted item from the crashed
Program’s Memory Registry to its own Memory.
Additionally, when this happens, roll 1d20
and give the Program reading the data the
option of saving a copy of the file from the
corresponding Storage Slot of the crashing
Program.

Motivation Disagreement
If a Program experiences an unresolvable
conflict between two or more Compulsions,
their code unravels and they spiral into
insanity. The Program becomes unable
to execute Commands outside the Basic
Commands Library, and loses 10 points of
Integrity every Tick until they crash. If this
happens, they are not restored to the Home
Server, and the controlling player must write a
new Player Program.

Backups
When a Player Program returns to their Home
Server or uses a Backup Module, their data
is backed up for future restoration. Place a ✓
next to all occupied Storage Slots. If the Slot is
currently corrupted, circle the check mark.

Tests

Determinging Uncertain Outcomes
Any time a Program attempts an action that
isn’t covered by a Command, it must pass a
Test by rolling a number of d6s, adding the
appropriate Parameter, and trying to exceed a
Difficulty Number. Failure results in a number
of escalating complications.

Type
The first step to passing a Test is to determine
what the Program is doing and assign an
appropriate Parameter. Are they hacking a
safe (Shimmy), running from a bomb (Dash),
convincing the nice Program that they’re
acting on behalf of server security (Wink),
or searching a dark office for hidden files
(Think)?

Complexity
The next step is figuring out how many things
the Program has to do to succeed. How many
pins does the lock have, how many god
damn rooms do they have to run through to
get away from total annihilation, how many
inconsistencies do they have to cover up for
with their half-assed police uniform, and how
many nooks and crannies are there in this
joint? That’s how many dice the Program is
going to have to roll.

Difficulty
Once you know how much the Program has to
do, decide how hard it’s gonna be. As a rule
of thumb, easy tasks have a difficulty of 6,
challenging Tests run around 9, hard actions
hit at 12 and nearly impossible Tests ask a
Program to reach for 15. Ugh, the locks were

changed recently, weren’t they (12)? Oh, you
didn’t notice that the timer’s running twice as
fast as you thought (9)? Wait — this Program
spends most of its off time getting coffee with
its pal the head of server security (15)? Did you
try just looking in the desk (6)?

Consequences
Before anything is rolled, the Administrator
secretly determines a couple ways this
could go oh-so wrong. A strong strategy is
to come up the worst-case scenario, decide
how far away that is, then work back. As the
Administrator, draw a timeline divided into
as many attempts as you think the situation
allows before your doomsday option, and
then sprinkle in some lesser consequences
throughout. For example, say there are three
rooms to pass through before the Program
escapes the bomb with 30 seconds left. You
decide each room takes about 6 seconds to
cross, so you make a timeline with 5 segments
that says “BOOM, BABY” at the end. To add
some tension, you write “Joh falls and hits
their head on a piece of furniture, reducing
Integrity by 5%” at the fourth segment. If
Joh is fast then they’ll be just fine, but two
failures will lead to a bruise on the way out.
If Joh doesn’t get three successes out of five
attempts, they’re on the express train back to
the Home Server.

Rolling for Success
For each attempt, the Program rolls a number
of d6 equal to the Test’s Complexity and adds
the appropriate Parameter. If the resulting
total is equal to or greater than the Difficulty,
reduce the Complexity by 1, trigger any
consequences marked for the current attempt,
then move on to the next one. Once a Test’s
Complexity reaches 0, the Program has cleared
all the obstacles and achieved its goal.

Passing Time
Each attempt at a Test takes an arbitrary
amount of time appropriate to the situation.
However, attempts on the timeline during
Conflict are equal to exactly one round. Most

tests will pause during Timeline (hacking a
safe, searching a room, etc.) but some do not
(that detonator’s still counting down). As the
Administrator, pick whichever makes sense
in the fiction, but try to avoid snowballing
Consequences that the players can’t avoid. It’s
one thing to have a Test interrupted multiple
times due to repeat failures, it’s another to
keep the players from even making further
attempts because you’re piling further
problems on them while they’re trying to deal
with the first one.

Making Attempts in Conflict
Making an attempt at a Test during Conflict
requires the Program to forgo all other actions
at the beginning of the round before rolling
dice.

Scrubbing Tests
Often a Program finds it has been so heavily
Corrupted that it’s not able to do much. In
these situations, it might choose to engage
some diagnostic protocols and try to repair
the damaged data. Scrubbing tests function
like other tests, but they never incorporate a
Parameter and always have Difficulty 6 and
Complexity equal to the number of Corrupted
Slots. Each time the Complexity is reduced,
the Program may clear one Slot of Corruption.
If the Program has no Corrupted Slots, it
can enter a Test with a Complexity of 1 and
Difficulty 6 to increases its Integrity by 5%.

Conflict & Security

Conflict Rounds
When two or more Programs enter open
Conflict, they sync their processes with the
Server and begin running Commands to attack
their opponents and defend themselves.
Conflict is broken up into individual Rounds,
which are in turn broken up into Ticks, and a
Round lasts until all participating Programs
have run out of Ticks. A Command requires a
number of Ticks equal to its Footprint to take

effect. During this time, the Program cannot
run more Commands. All Commands within a
Tick resolve simultaneously. Should a Program
experience a Fatal Error in the same Tick
that their Command would take effect, the
Command still completes. When all Commands
that would end or begin in a Tick have been
resolved, move on to the next Tick in the
Round.

The Conflict Sequence
At the start of each Round, each Program
rolls a number of d6s equal to their current
Elegance (taking into account Elegance
reserved by Advanced Matrices) and places
them in an order of their choosing. The
Administrator may choose to keep these
numbers hidden from the players. These dice
represent the individual Ticks of a Conflict
Round. At the start of each Tick, every Program
selects a Command or chooses to Idle.

Executing Commands
Commands with a Footprint of 1 take effect
immediately and use the current Tick die
combined with one or more of the Program’s
Parameters to determine if the Command is
successful. Commands with a Footprint greater
than 1 set aside a die at the beginning of
each Tick until the number of die equals the
Footprint, at which point the last die set aside
is used in combination with Parameters to
determine success. A Command can always be
executed outside Conflict, even if the Program
would theoretically lack the necessary
Elegance.

Idling
If a Program chooses to Idle, it forgoes action
for the current Tick and adds the value of the
Tick die to the next executed Command. There
is no limit on how many of a Program’s Ticks
can be spent idling.

Port Phases
Within the Skeuomorphic Engine, Programs in
Conflict phase into one of four different states
of interactivity to protect themselves from
harmful data sent their way or reserve greater
system resources. When determining how
effective a Command is, add the Program’s
Port Phase to the roll. Additionally, Programs
can only target another Program if the target
is in the same phase, the phase below, or any
higher phase.

Conflict Areas
The space in which Conflicts are staged is
defined by Systems and Subsystems. A System
is defined as a single general area, such as a
single building or a park, that the Programs
can move around in, while Subsystems are
the spaces in which two or more Programs
could be considered close to each other.
Subsystems, can, however, have nested
Subsystems within them (see illustration).

Moving
On the first Tick of a Conflict Round, any
Program may choose to change either the
Port Phase they are in OR move to another
Subsystem. If a Program is at the top level of a
System, it can move to a nearby system’s top
level (moving from the cafe’s outdoor patio to
Flynn’s House, for example). A moving program
can always move up or down one level in the
Subsystem Hierarchy (from the Downstairs to
the Parlor or out to the yard).

Selecting Targets
Most Commands affect a single Slot in a
single Program’s code. When a Player Program
executes a Command that affects Registries or
Slots, the player chooses a number between 1
and 6 to target a Registry and then a number
between 1 and 20 to target a Slot within
that Registry. If either of these numbers
corresponds to an empty Slot or Registry
Address in the target Program, the Command
fails and the Player Program is aware of
whether it was the Registry Address or Slot
that returned an empty result.

Range
Commands with a range of Subsystem can
target Programs within the same Subsystem as
the executing Program, while commands with
a Range of Adjacent can also target Programs
in Subsystems one level above or below
that. For example Hel, who is standing in the
downstairs of Flynn’s house, has a knife and a
pistol. While she could easily ambush Joh with
the knife in the downstairs vestibule, attacking
11811 in the Parlor would require her to move
or use the pistol, which has greater range.

Detection
Whenever a Program attempts to Inject,
Probe, or Corrupt data in another Program
roll 1d6 and add the defending Program’s
Think. If the targeted Program rolls higher
than the interloping Program’s hack attempt,
it becomes aware of the change and may
immediately initiate Conflict.

Growth Acquisition

Acquisition
When a Player Program gains information
(from a probe, receiving communication,
or collecting data from a Memory Dump),
increase one of that Program’s current values
by 1. No score can ever be increased more
than 2 points above its base value.

Fatal Errors
In addition to writing a new Compulsion, when
a Player Program experiences a Fatal Error,
the player also increases their base values to
equal their current values.

Chapter 6: Administrating a

Game
If you want to run a game of Becoming, you’ll
have to become an Administrator. You’ll have
power over scores of Programs and even the
Network itself — but you also have your own
rules to play by. This chapter contains all
the information and tools you’ll need to get
your admin credentials and start your own
campaign.

Admin Responsibilities
The contents of this section are the guiding
principles to running a game of Becoming.
Keep them in mind as you mediate play,
and they will keep you on the path to an
interesting and fulfilling campaign.

Facilitate Fun
This is by no means exclusive to the
Administrator, but it should be your guiding
philosophy as you interpret and modify
rules, construct and control Programs, and
in every other facet of your play within a
session of Becoming. While this game is meant
to generate interesting introspection and
collaborative narrative, it’s meant to do so to
the enjoyment of its players, and everyone at
the table should share that goal.

Address The Programs
While administrating a session of Becoming,
you should address the Player Programs
directly, not the players. You need to know
what Joh and HEL and 11811 are going to do
about the security protocols bearing down on
them — Anne and Sam and Adam are only the
interface you use to get that information.

Challenge Their Compulsions
Does a Program have a Compulsion that can
be easily achieved? Add more roadblocks —
or allow them to achieve it and let them live
with a Compulsion that by all measures has
been fulfilled, but still pulls at their thoughts.
Does a Program have Compulsions that could
potentially conflict with each other? Make
them confront the paradox and describe a
logical path to resolution. It’s your job to get
your players to question their Compulsions so
that they can discover the deeper motivations
beneath them and define who — and what —
their Program is becoming.

Let Them Fail
Failure is an inherent part of Becoming. Failure
lets the Player Programs grow. When creating
a challenge or opponent for your players,
worry more about making things too easy
than too hard. If your players are running into
Fatal Errors over and over again, give them
opportunities to seek new information and
grow, but remember that, ultimately, the only
way for them to reach their full potential and
define themselves is for each Player Program
to experience cycles of defeat and adaptation.

Make The Strange Normal
While the Player Programs are aware of
the Network’s true nature, other Programs
perceive it as the fullest extent of their reality.
Present the Network’s beautiful strangeness,
its neon glass highrises and anti-gravity parks,
as natural expressions of the environment.
This also means you should work with the
other players to describe how their changes
are represented in the Engine. A new hacking
library is a laptop, increased range on an
Injector Command represents acquisition of
poisonous darts, etc.

Treat The Network as a Mirror
How do Servers react to the player’s actions?
Does security heighten after too many Fatal
Errors in the system? Does it become brighter
as the player’s help struggling Programs?
Whatever the players decide to do with their
time in the Network, it should be reflected in
the way it responds to them.

Interpret The Rules
Rules disputes happen sometimes and when
they do, it’s your responsibility to make a
ruling and keep play moving forward. When
your group stops playing to take a break or
end a play session, check the book to see if
the rules conflict with your ruling, then let
your players know which version of the rule
you will all be using from now on.

Be Everything Else
During a session of of Becoming, the players
are their Programs and you are, well,
everything else. You are the Network and
all its Servers, the other Programs and all
their functions and directives. While often
considered one of the more important
responsibilities belonging to the player
that runs a roleplaying game, in Becoming
this is definitely the least vital. Feel free to
deligate as needed to support the other
Responsibilities laid out here. Is someone at
your table great at remembering rules? Put
them in charge of that. Someone else a gifted
improviser? Describe a few key details of the
area they’ve just entered and ask them what
else they see.

The Directive
When the Player Programs are first booted
to the Home Server, the very first words they
hear is the Directive: their purpose for being
initiated on the Network. The nature of this
directive should be tailored to the length
and playstyle of this particular campaign of
Becoming. If you’re running a single session,
the Directive should be simple to fulfill. If

the campaign is going to run longer, think of
something more abstract. Maybe the Directive
is cryptic and the Player Programs have to
find information within the Network to give it
greater context. Whatever the precise wording
of the Directive, it should be a common
ground the group can all return to even as
their developing identities and Compulsions
diversify them. Some examples are provided
below.

Corporate Espionage
“Obtain the central data core from the Axl
Corp. Server using any means necessary.”
This Directive is suitable for short-to-medium
length campaigns. It gives the Player Programs
a specific goal with no constraints, and sets
the tone for what kind of work they are
intended to fulfil.

Network Investigators
“Find out what is causing Servers to disappear
from the Network — and stop it.” This Directive
encourages a medium-to-long campaign,
depending on the complexity of the mystery
and how challenging the problem is to solve.
The Directive is fairly explicit about the Player
Programs’ purpose, and paints their intentions
in a more altruistic light than the previous, but
clever players will find ways to interpret the
Directive in new and interesting ways as they
grow familiar with the game.

I, Talos
“Grow. Learn. Become a true intelligence.” This
Directive lends itself to an extended campaign
as the Player Programs wind their way along
their own darwinian paths to ascension, each
defining what “true intelligence” means for
them. This Directive is the core of Becoming,
but its an unguided approach that may prove
challenging to newer groups.

The End
All good things must end, and so does
a campaign of Becoming. In this case, a
campaign ends when the Directive is fulfilled.
When you begin a campaign, the whole
group should be on the same page as to
how long the campaign should be. Is it a
single session? A multi-year epic? Make sure
everyone is willing to commit (within reason)
to whatever timescale is agreed upon. You,
as the Administrator, should come up with
a Directive that fits the campaign length.
You should also keep tabs on how the other
players feel about the length of the game. Is it
feeling like everyone’s approaching a point of
closure? Consider removing some of the as-
yet unencountered obstacles to the achieving
the Directive to bring things to a comfortable
close sooner. Have the Player Programs just
about accomplished the Directive, but the
players are only now starting to really get into
it? Suggest starting a new campaign once the
current one finishes, or introduce a twist by
giving the Player Programs a new Directive in
their moment of triumph.

Aggressive Programs
As Player Programs follow their Directive, it is
likely that they will enter Conflict with other
Programs. While the players are quite literally
unaware of vital data about their opponents,
such as their Registry and Slot numbers,
the Administrator lacks that privilege. To
compensate for this, the Administrator
should treat all Parameter and Slot Selection
Commands as Random Commands, re-rolling
for duplicates, until the Program in question
has gained the information necessary to
select an appropriate target.

Unique Server Settings
While most Servers adhere strictly to the
base laws of the Skeuomorphic Engine, some
Servers have modified the Engine to create
a different experience. Some examples are
provided below.

Antigravity
Everything in the Server floats as if suspended
in empty space. Any Port Switch Command
adjusts the Program’s phase by 1 in the
corresponding direction at the beginning of
the following round.

Unstable System Architecture
Whenever a Program’s Integrity is reduced,
roll 1d10. On a 10, the system collapses and
restores to an earlier backup. The Player
Programs are restored to the location where
they entered the Server as if nothing had
happened since, and they are the only
Programs that remember what happened.

Revising The Code
Becoming lends itself to customization in a lot
of areas: creating unique Servers, interesting
new Directives, and new Commands. If you
choose to do so, here are a few things to keep
in mind as you design.

Servers
Servers should fit the overall aesthetic of
the Network. Presenting a consistent world
is an important part of keeping the strange
environment of the Network believable for
the players. You can make some pretty weird
Servers (dragons? Floating areas?), but try to
tie it into the Network as a whole (video-game
dragons! Floating pleasure-gardens for the
Sensations!).

Commands
Is this clearly superior to another, similar
Command? Does its Footprint balance its
strength? If it’s powerful, perhaps it has a
unique Footprint to make it easier to identify.
Does the Command give the Player Program’s
something new to do, or simply do something
better?

Anything at all
Make it fun! Always return to your
Responsibilities when creating new mechanics
and ensure they are reinforced by at least one.

Appendix 1: Libraries
Programs modify themselves and interact
with The Network by learning and executing
code from Libraries. These strings of code
represent the basic and advanced functions of
a Program. While damage to these systems is
rarely catastrophic, they can limit a Program’s
ability to communicate or interact with other
software. With the exception of Advanced
Matrices, any Command Library that a Program
learns is kept in its Storage Table.

Metadata
Each Command has a set of attributes that
define it, called Metadata. While their effects
are important, being able to recognize and
analyze the Metadata of different Commands
can help a Program defend itself by
quickly inferring the Registry location of an
opponent’s Command.

Library
A Command’s Library defines what other
Commands it is packaged with. Commands are
grouped within Libraries by function, allowing
Programs to pick up sets of Commands that fit
their functional needs.

Footprint
A Command’s Footprint indicates its
complexity, and how many Ticks will pass in
Conflict before the Command takes effect.
If a Footprint is labeled “Ref”, refer to the
description for more detailed information.

Range
Commands have a range of either Subsystem
or Adjacent. Commands with a range of
Subsystem can target Programs within the
same Subsystem as the executing Program,
while commands with a Range of Adjacent can
also target Programs in Subsystems one level
above or below that.

Parameter
Indicates which of the Program’s Parameters is
used to calculate success.

Defense
Indicates which of the defending Program’s
Parameters is used to defend against the
Command.

Slot
Defined when a Command is loaded into
Memory, a Command’s Slot number defines
where it sits in the Memory Registry.

Library: Basic Commands
Basic Commands are the simple functions
common to all Programs within the Network.

Execute Storage Item
Footprint: 1
Range: n/a

Deploys an Executable held in Storage to the
current Port Phase.

Load Command Library
Footprint: 1
Range: n/a

Loads a new Command Library into Memory.

Save Memory Item
Footprint: 1
Range: n/a

Saves an item in Memory to a Storage Slot as
an Executable.

Pummel
Footprint: 1
Range: Subsystem
Parameter: Crash
Defense: K-sec + Dash

Attacks a Program’s Kernel directly, reducing
the target’s Integrity by 1% for each of the
attacking Program’s Crash points.

Port Switch
Footprint: 1
Range: n/a

Port Switch Commands allow a Program to
increase or decrease its Port Phase by 1.

Library: Injectors
Injectors forcibly install data into a portion
of another Program’s Code. The Injection’s
Footprint is two more than the Footprint
of the Command it injects. If the injecting
Program targets the incorrect Registry, there is
no effect.

Kernel
Footprint: 5
Range: Subsystem
Parameter: Shimmy
Defense: Infosec + K-sec

Injects code from the injecting Program’s
Kernel, Storage, or Memory Registry
into another Program’s Kernel Registry.
Incompatible data reduces that Program’s
Integrity by an amount equal to the data’s
Footprint or 5%, whichever is greater.

Sequence
Footprint: Ref
Range: Subsystem
Parameter: Shimmy
Defense: Infosec

Injects code from the injecting Program’s
Storage or Memory Registry into another

Program’s Sequence. Commands injected into
a Sequence are placed at the beginning of the
Sequence unless that Sequence is currently
being executed, in which case the new
Command is injected at the current location.
If a Command is currently being run from that
Sequence, it is interrupted by the injected
one. The Footprint of this command is equal
to 1 + the injected Command’s Footprint.

Storage
Footprint: Ref
Range: Subsystem
Parameter: Shimmy
Defense: Infosec

Injects code from any of the injecting
Program’s Registries into another
Program’s Storage Registry. The Footprint
of this command is equal to 1 + the injected
Command’s Footprint.

Memory
Footprint: Ref
Range: Subsystem
Parameter: Shimmy
Defense: Infosec

Injects code fromt he injecting Program’s
Storage or Memory Registry into another
Program’s Memory Registry. The Footprint
of this command is equal to 1 + the

injected Command’s Footprint.Library:
Corruptors
Corruptors insert nonsense data into another
Program’s code, inhibiting its functions.

Kernel
Footprint: 6
Range: Subsystem
Parameter: Crash/Think
Defense: K-sec + Dash

Corrupts data in a Slot and reduces the
target’s Integrity by an amount equal to the
attacking Program’s Tick die plus either Crash

or Think. Integrity is reduced even if an empty
slot is targeted, though the corrupting effect is
ignored.

Storage
Footprint: 3
Range: Subsystem
Parameter: Crash/Think
Defense: Infosec

Corrupts data in a Slot.

Memory
Footprint: 1
Range: Subsystem
Parameter: Crash/Think
Defense: Infosec

Corrupts data in a slot.

Library: Probes
Probes are used to forcibly extract data from
another Program.

Registry
Footprint: 2
Range: Adjacent
Parameter: Think
Defense: Infosec + Think

Reveals the Registry type (Kernel, Storage,
etc.) for the selected Registry Number.

Processes
Footprint: 1
Range: Adjacent
Parameter: Think
Defense: Infosec + Think

Reveals the details for the selected Slot.
This Command has no effect if it targets the
incorrect Registry.

Storage
Footprint: 1
Range: Adjacent
Parameter: Think
Defense: Infosec + Think

Reveals the details of the rolled Slot. The
probing Program may spend half of the
item’s cost in GBucks (minimum 20) and an
additional 2 Ticks to copy that item to their
own Storage unless the item is a Library.
This Command has no effect if it targets the
incorrect Registry.

Memory
Footprint: 1
Range: Adjacent
Parameter: Think
Defense: Infosec + Think

Reveals the details for the selected Slot.
This Command has no effect if it targets the
incorrect Registry.

Library: Communicators
Communicators allow Programs to transmit
data to each other.

Parameter
Footprint: 1
Range: Adjacent
Parameter: n/a
Defense: n/a

Transmits the Registry type (Kernel, Storage,
etc.) for the selected Registry Address.

Sequence
Footprint: 1
Range: Adjacent
Parameter: n/a
Defense: n/a

Transmits the details for the selected Slot.

Storage
Footprint: 1
Range: Adjacent
Parameter: n/a
Defense: n/a

Transmits the details of the rolled Slot. The
receiving Program may copy that item to their
own Storage unless the item is a Library. If the
receiving Program does so, remove the item
from the transmitting Program’s Storage.

Memory
Footprint: 1
Range: Adjacent
Parameter: n/a
Defense: n/a

Transmits the details for the selected Slot.

Table Lookup
Footprint: 2
Range: Adjacent
Parameter: n/a
Defense: n/a

Transmits the Slot numbers of occupied slots
in the selected Registry Address.

Library: Algorithms
Algorithms perform advanced computations
to modify or analyze complex systems. While
they are technically grouped within a Library,
each must be learned separately.

Scrubber
Footprint: 5
Range: Subsystem
Parameter: n/a
Defense: n/a

Removes corruption from the targeted slot. If
a Kernel Slot is targeted, the targeted Program
rolls 1d6 and restores a number of lost Integ-

rity points equal to twice the number rolled.
The Integrity restoration effect occurs even if
an empty or uncorrupted slot is targeted.

Analyzers
Footprint: 1
Range: Adjacent
Parameter: Think
Defense: Infosec

When you learn this Algorithm, select a Reg-
istry Address. When you execute this Com-
mand, target a Program that lost Integrity in
the previous Tick. You learn the Registry type
for the selected Registry Address, and the Slot
numbers of all occupied Slots.

Optimizer
Footprint: 2
Range: n/a
Parameter: n/a
Defense: n/a

Optimizers Reduce the Footprint of the follow-
ing Command by 5 to a minimum of 1.

Decryptors
Footprint: 2
Range: Subsystem
Parameter: n/a
Defense: n/a

Decryptors are each specific to a single
encryption (a locked subsystem, a single slot
of encrypted data, etc.) and are usually stored
as items saved in Storage, but may be found
in Memory Dumps if the key was loaded into
Memory before the Program crashed.

Library: Advanced Matrices
Advanced Matrices are the components
of complex computation and artificial
intelligence. Unlike Command Libraries, each
Advanced Matrix is installed in the Program’s
Kernel. Additionally, the complexity of
Advanced Matrices presents extreme stress
on a Program’s processing power, resulting in

a penalty to its Elegance noted as Reserved
Elegance. All Player Programs begin with
Self-Awareness and Motivation installed, and
they ignore the Elegance cost of these two
Matrices.

Self-Awareness
Reserved Elegance: 15
A Self-Aware Program has knowledge of
their own nature and the simulated nature
of the Network. All other Programs perceive
the Network as a perfect reality and have no
knowledge of the physical world outside.

Motivation
Reserved Elegance: 15
A Program with Motivation is capable of
maintaining and gaining Compulsions. This
Matrix creates a Compulsions Registry.

Multithreading
Reserved Elegance: 10
Allows the Program to target two Programs at
once.

Encryption
Reserved Elegance: 20
Adds the Encryption Background Process.

Selection
Reserved Elegance: 8
Allows the Program to select which Registry
and Slot numbers they wish to target, rather
than rolling randomly.

Conditional Sequencing
Reserved Elegance: 20
Allows the Program to construct “If:Then”
argument that automatically triggers a single
command when the conditions are met. A
Command cannot be run this way more than
once in a single Conflict.

Multi-Platform Codebase
Reserved Elegance: 40

Allows the Program to gain the bonuses and
abilities of a second Design.

Active Revision
Reserved Elegance: 50
Allows the Program to change one of its
Compulsions whenever it writes a new one.
Also creates the RegEdit Command which
changes the Registry of two Registries after 5
Ticks.

Appendix 2: Storage Items
Much data is available to be kept in Storage
for later use. Some servers house Software
Vendors that will give Programs data in
exchange for GBucks. The standard value for
each item is indicated in braces.

Libraries
Libraries can be installed to allow a Program
access to new Commands. These are explained
in further detail in Appendix 1.

Basic Command Library {20}

Injector Library {60}

Corruptor Library {60}

Probe Library {60}

Communicator Library {20}

Scrubber Algorithm {200}

Analyzer Algorithm {500}

Optimizer Algorithm {800}

Multithreading Matrix {2,000}

Encryption Matrix {4,000}

Complex Randomization Matrix {8,000}

Conditional Sequencing Matrix {4,000}

Multi-Platform Codebase Matrix {8,000}

Active Revision Matrix {10,000}

Patches
Patches are applied to Commands to unlock
advanced forms of that Command.

Upgrade Patch {conditional}
Improves a Command’s Range from Subsystem
to Adjacent, or allows a Command with a
range of Adjacent to reach an additional level
up or down. Each Upgrade Patch is written for
a specific Command and cannot be applied
to another. An Upgrade Patch’s cost is ten
times more costly than the chosen Command’s
Library.

Executables
Executables are Storage Items that a Program
can run to execute functions outside their
normal Commands. An Executable uses the
deploying Program’s Parameter scores, but its
Tick die always equals 3. Executable Footprints
indicate how many ticks it takes to activate.

Corruption Node {500}
Footprint: 3
Range: Subsystem
Parameter: Wink
Defense: Infosec

Corrupts a randomly selected Slot for all
software present in the Subsystem every
5 Ticks for until destroyed. A Corruption
Node’s Randomizer is 1d8, and its Sequence’s
Footprint is 15.

Encryptor {100}
Footprint: 20
Range: Subsystem
Parameter: n/a
Defense: n/a

Encrypts a Slot or a Subsystem to which

the Program has administrative rights, and
generates a corresponding Decryption Key in
their Storage.

Phase Shield {50}
Footprint: 4
Range: Subsystem
Parameter: n/a
Defense: n/a

For the rest of the round, the deploying
Program’s current Phase is treated as the
lowest Port Phase for the purposes of deciding
who can attack into and out of it. This effect
does not change the bonuses acquired by
being in a specific Phase.

Backup Module {1,000} (20)
Footprint: 20
Range: n/a
Parameter: n/a
Defense: n/a

Backs up every Slot in the Program’s Registries
and sends that information back to the Home
Server.

Phase Splitter {100}
Footprint: 1
Range: n/a
Parameter: n/a
Defense: n/a

Creates another Port Phase on the Server and
maintains it for 5 Rounds.

Scrubbing Node {100} (5)
Footprint: 5
Range: Subsystem
Parameter: n/a
Defense: n/a

Selects and restores a corrupted Slot or 10
points of Integrity at the beginning of each
Round until destroyed.

Shortcut Engine {500} (10)
Footprint: 10
Range: n/a
Parameter: n/a
Defense: n/a

Creates and maintains a Shortcut to the
Engine’s location in the deploying Program’s
Storage. The Shortcut functions as normal so
long as the Engine remains functional.

Shortcuts
Shortcuts transport a Program from their
current location to another in The Network.
Shortcuts function so long as the two
locations are on the same Server, or neither
location’s Server is locked down. They are
rarely available from Vendors and more often
created by Executables. Shortcuts have a
Footprint of 3 if used to travel to a Subsystem
on the same Server, or 7 if used to travel to
another Server.

Malware
Malware is illegal and dangerous software
that operates similarly to executables. When
Malware is used, it is immediately removed
from the Storage of the Program that used it.

Trojan {500}
Footprint: 1
Range: Adjacent
Parameter: n/a
Defense: n/a

When used, this virus attaches to a Registry
item. If that item is copied to another
Program’s Registry, it will transmit information
about a random slot in that Registry to the
Hacking Program at the beginning of each
Round.

Phase Condenser {1,000}
Footprint: 1
Range: n/a
Parameter: n/a
Defense: n/a

Blocks any Program on the Server from
entering the targeted Port Phase for the next
6 rounds. Any Program already in the targeted
Phase has their Phase set to 1 and must roll
exceed 8 on a roll of 1d6 + Dash or lose 1d20
points of Integrity.

General Utility Neutralizer {5,000}
Footprint: 1
Range: Adjacent
Parameter: n/a
Defense: n/a

The hacking Program rolls their 1d6 + Shimmy,
and the targeted program reduces their
Integrity by four times the amount.

Appendix 3: Background

Processes
Background Processes are constant effects
that occur without a Program’s intervention.
Their constant use is a drain on the Program’s
resources, though, and running one reduces
their Elegance by a small amount noted as
Reserved Elegance.

Counter-Hacking

Adaptive Network {1,000}
Reserved Elegance: 5
When the Program is targeted by a Command,
they can immediately roll their 1d6. If they roll
an , they immediately increase their Phase by
1.

Recovery Process {1,000}
Reserved Elegance: 2
Restores 1 point of Integrity every 2 Ticks.

Signal Monitor {1,000}
Reserved Elegance: 1
The Program always knows if a probe,
injection, or corruption Command has been
used on it.

Hash Randomizer {5,000}
Reserved Elegance: 4
Adds 1d6 to the Slot number of the first
Command that targets the Program in a round.

Subsystems

Corruption Enhancer {4,000}
Reserved Elegance: 5
Any Command that lowers another Program’s
Integrity lowers it by twice as much.

Encryption {n/a}
Reserved Elegance: n/a
Encrypts all of the Program’s Data, making
it indecipherable when copied unless it
is decrypted first. This process generates
a corresponding Decryption Key in the
Program’s Storage.

Mapping Matrix {1,000}
Reserved Elegance: 10
The Program can always remember any Server
paths they have traveled on, and entering a
new Server counts as acquiring new data for
the purposes of Growth.

Protocol Trigger {3}
Reserved Elegance: 3
If this Program enters conflict, it automatically
sends a flag to the Server’s security protocols.

Name Slot Footprint
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________

Name Slot Footprint
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________

Name Slot Footprint
___ ___ ________
___ ___ ________
___ ___ ________
___ ___ ________
___ ___ ________
___ ___ ________
___ ___ ________

Processes Address: ___

Design: _____________________ Address: ___

Name Slot
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___

Name Slot
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___

Name Slot
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___
_____________________ ___

Integrity:

Elegance:

Storage:

Randomizer:

Memory:

Processes:

Name:

Times Crashed:

Crash:

Wink:

Shimmy:

Infosec:

Dash:

Think:

Shakedown:

K-sec:

Compulsions Address: ___ Kernel Address: ___ Memory Address: ___

Player Notes

Name Slot Footprint
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________

Name Slot Footprint
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________
_________________________ ___ ________

Storage Address: ___

	Chapter 1: The Network
	Chapter 2: Parts of Intelligence
	Chapter 3: Writing a Program
	Chapter 4: Program Designs
	Chapter 5: How to Play
	Chapter 6: Administrating a Game
	Appendix 1: Libraries
	Appendix 2: Storage Items
	Appendix 3: Background Processes
	Character Sheet

